Joni

Argument: Personas lose to ‘audience of one’

english

Introduction. In this post, I’m exploring the usefulness of personas in digital analytics. At Qatar Computing Research Institute (QCRI), we have developed a system for automatic persona generation (APG) – see the demo. Under the leadership of Professor Jim Jansen, we’re constantly working to position this system toward the intersection of customer profiles, personas, and analytics.

Three levels of data. Imagine three levels of data:

  •  customer profiles (individual)
  • personas (aggregated individual)
  • statistics (aggregated numbers: tables and charts)

Which one is the best? The answer: it depends.

Case of advertising. For advertising, usually the more individual the data, the better. The worst case is the mass advertising, where there is one message for everyone: it fails to capture the variation of preferences and tastes of the underlying audience, and is therefore inefficient and expensive. Group-based targeting, i.e. market segmentation (“women 25-34”) performs better because it is aligning the product features with the audience features. Here, the communalities of the target group allow marketers to create more tailored and effective messages, which results in less wasted ad impressions.

Case of design and development. In a similar vein, design is moving towards experimentation. You have certain conventions, first of all, that are adopted industry-wide in the long run (e.g., Amazon adopts a practice and small e-commerce sites follow suit). Many prefer being followers, and it works for the most part. But multivariate testing etc. can reveal optimal designs better than “imagining a user” or simply following conventions. Of course, personas, just like any other immersive technique, can be used as a source of inspiration and ideas. But they are just one technique, not the technique.

For example, in the case of mobile startups I would recommend experimentation over personas. A classic example is Instagram that found from data that filters were a killer feature. For such applications, it makes sense to define an experimental feature set, and adjust if based on behavioral feedback from the users.

Unfortunately, startup founders often ignore systematic testing because they have a pre-defined idea of the user (à la persona) and are not ready to get their ideas challenged. The more work is done to satisfy the imaginary user, the more harder it becomes to make out-of-the-box design choices. Yet, those kind of changes are required to improve not by small margins but by orders of magnitude. Eric Ries call this ‘sunk code fallacy’.

In my opinion, two symptoms predating such a condition can be seen when the features are not

  1. connected to analytics, so that tracking of contribution of each is possible (in isolation & to the whole)
  2. iteratively analyzed with goal metrics, so that there is an ‘action->response->action’ feedback loop.

In contrast, iterative (=repetitive) analysis of performance of each feature is a modern way to design mobile apps and websites. Avoiding the two symptoms is required for systematic optimization. Moreover, testing the features does not need to take place in parallel, but it can be one by one as sequential testing. This can in fact be preferable to avoid ‘feature creep’ (clutter) that hinders the user experience. However, for sequential testing it is preferable to create a testing roadmap with a clear schedule – otherwise, it is too easy to forget about testing.

Strategic use cases show promise. So, what is left for personas? In the end, I would say strategic decision making is very promising. Tactical and operational tasks are often better achieved by using either completely individual or completely aggregated data. But individual data is practically useless at strategic decision making. Aggregated data is useful, e.g. sales by region or customer segment, and it is hard to see anything replace that. However, personas are in between the two – they can provide more understanding on the needs and wants of the market, and act as anchor points for decision making.

Strategic decision aid is also a lucrative space; companies care less about the cost, because the decisions they make are of great importance. To correctly steer the ship, executives need need accurate information about customer preferences and have clear anchor points to align their strategic decision with (see the HubSpot case study).

In addition, aggregated analytics systems have one key weakness. They cannot describe the users very well. Numbers do not include information such as psychographics or needs, because they need to be interpreted from the data. Customer profiles are a different thing — in CRM systems, enrichment might be available but again the number of individual profiles is prohibitive for efficient decision making.

Conclusion. The more we are moving towards real-time optimization, the less useful a priori conceptualizations like target groups and personas become for marketing and design. However, they are likely to remain useful for strategic decision making and as “aggregated people analytics” that combine the coverage of numbers and the details of customer profiles. The question is: can we build personas that include the information of customer profiles, while retaining the efficiency of using large numbers? At QCRI, we’re working everyday toward that goal.

Joni

Kuinka Google toimii? Keskeiset lähteet.

suomeksi

Googlen algoritmin tarkka toiminta on liikesalaisuus. Siihen, mitä tiedetään, paras lähde on Googlen oma sivusto.

Tässä keskeisimpiä linkkejä:

Hakukoneoptimoinnista löytyy paljon spekulointia – parasta on nojautua Googlen viralliseen tietoon. Monet ns. tutkimukset, joita näkee alan blogeissa, eivät kestä akateemista tarkastelua, eikä niitä siksi voi käyttää lähteinä. Aina aika ajoin ne esimerkiksi julistavat, että “SEO on kuollut”, tai että “linkit eivät enää merkitse”, tms. juttuja, joilla ei ole todellisuuspohjaa. Virallisen sivun lisäksi Googlen blogi ja Matt Cutts ovat hyviä lähteitä – Matt ei enää töissä Googlella, mutta Twitter-historiasta löytyy paljon vastauksia (vastasi hakutulosten laadusta).

Huomioi myös:

Google ei näytä kaikille käyttäjille samoja tuloksia: https://googleblog.blogspot.qa/2009/12/personalized-search-for-everyone.html

Toiseksi Google käyttää satoja tai tuhansia signaaleja, ja jokainen hakutulossivu on niiden päätösten uniikki tulos. Googlen algoritmi saattaa sisältää neuroverkkotoimintoja (syväoppimista), joiden tuloksena on hankala jäljittää tietyn hakutuloksen näyttämisen syytä. Näiden syiden vuoksi on parasta välttää yleistyksiä “parhaista käytännöistä”. Paras sääntö kokemuksen mukaan on: tee käyttäjäystävällisiä ratkaisuja, niin teet parasta hakukoneoptimointia.

Joni

First experiences with startup user studies (ca. 2010)

english
First experiences with startup user studies (ca. 2010)

I was reading through old emails while backing up my Gmail inbox with Gmvault, an open source command-line tool. Among other interesting trips to memory lane, one message was about the first startup user study I was involved with. It was for a life-coaching startup that eventually failed. In retrospect, it’s interesting to reflect on what went wrong and how we could have improved. In that spirit, I’m sharing these notes on the user study.

***

Okay, here’s my analysis based on user feedback.

We have three big issues to tackle at the moment:

  1. value
  2. mobilizing users
  3. clarity and purpose of the service

Value refers to a) providing such benefits customers want to pay for and b) setting the right price point.

Mobilizing refers to practical issue of getting customers to use the service on daily basis – i.e. facilitating the data input process as much as possible.

Clarity refers to layout and functionality of the site.

1. VALUE

a) Problem:

Are users willing to pay for the service?

“Sivusto ei tuonut mitään uutta tässä vaiheessa muihin vastaavanlaisiin sivustoihin verrattuna, paitsi jos sivustonne pysyy ilmaisena.” (“The site doesn’t bring anything new compared to other similar sites, except if it stays free.”)

-> There’s a need to introduce features people are willing to pay for.

I’ll doubt they’d pay at the moment, although we should have asked that in the feedback form.

Solutions:

-> Creating a mobile version for paying customers (cf. Spotify)

“Ehdottomasti mobiiliversiota tarvitaan.” (“A mobile version is absolutely needed.”)

I agree that an optimized version for mobile phones is needed. Technically this would require mobile device detection and loading appropriate html+css files to fit the smaller resolution. Later on, if the service succeeds, an iPhone/Android app would be great 🙂

-> Other additional features for paying users such as meal (1) and training recommendations (2) (integrated in the app)

(1) “You could include an suggestion for the diet. You now have something like 50% proteins, 30% Carbo., 20% fat, but would be great to see already a diet suggestion based on that.

“It could include in the categories some traditional dishes like: Fish and potatos, Pasta and tomato, Kebak, etc…”

This was a constant concern by many respondents. As Valtteri suggested earlier, building meals is a great way of providing value. We could for example divide them to three categories based on nutritional values: snacks (välipalat), light meal (kevyt ateria) and heavy meal (raskas ateria). By combining these three, the service could propose a personalised diet based on consumption and need of calories calculated from person’s weight and other factors.

Also users could be given the possibility to add own meals and make them public for other users, as suggested in this comment:

“Yksittäisten ruokalajien sijaan voisi lisätä malliannoksia ja tarvittaessa muokata niitä samalla tavalla, miten annos pitää nyt koota täysin itse.”

(2) Another idea is creating a mentoring/peer supporting system that enables users to get support

b) Problem: “How much you’re thinking to charge the subscription?”

Solutions:

  1. Yearly fee of 25€
  2. Monthly fee of 2.95€ (“less than coffee cup in Starbucks” 🙂

Free of charge -> revenue coming from advertisements/affiliate marketing

So, I think we’ll need to make a decision now of whether to offer the service for free and acquire sponsors, or make it paid and introduce such features that would increase likelihood of paying.

Also, we can think of providing a free version for free and premium with extra features for a small fee.

2. MOBILIZING USERS

Problem: Users are too lazy/busy to add daily information, ergo the app is not used actively.

“In general I think that it is really great, but the problem is to add the information on a daily basis…. :(“

“Jos palvelua alkaa käyttää niin on riskinä, että sitä vain kokeilee, eikä käytä jatkuvasti”

Solutions:

-> Creating a mobile version that allows on-the-go editing of profile

-> Creating a scheduled email system that allows easy updating (“Did you do the assigned training? Answer ‘yes’ to this message and information is updated automatically to your Muscler profile”)

-> Making it possible to update via sms? (requires an sms gateway + might be complex to use)

-> Creating community pressure for using the service (assigning personal mentors who have access to a person’s progress data — while conserving anonymity)

-> Offering rewards after completing milestones (e.g. reductions of sponsor products such as proteins)

3. CLARITY AND PURPOSE

“On vähän epäselvä. Ohjeet voisi olla vaikka tyyliä ‘ranskalaiset viivat’ settiä” (“A bit unclear. Bulleted instructions needed”)

“Parantakaa/tiivistäkää putkea, joka alkaa tarvoitteiden asetannasta ja etenee seurannan aloittamiseen ja raportteihin, tällä hetkellä minun tulee itse välillä muistaa edetä seuraavaan kohtaan ilman kehhoitusta/vinkkiä” (“Improve the process starting from setting goals to tracking and reports – atm, i have to remember to move myself”)

“Tutoriaali tai step-by-step-ohjeet olisivat hyvät :)” (“tutorial or step-by-step instructions would be great”)

-> Inserting tooltips

-> Creating “Proceed to [next]” buttons (Proceed to Tracking/Reports)

-> Creating a “How to use?” page

Besides the video, a separate “How to use?” page is needed. a bullet-type list would do ok, like suggested by the user. it could contain steps of using the service along with links, being short and simple.

“Mitä tarkoittaa tarkalleen Vahvistus tai ‘Lisää kestävyyttä’. Näistä olisi hyvä olla tietoa, sillä eri lajien ihmiset saattavat nähdä nuo eri tavoin.”

(“What does strenghten or more endurance mean?”)

-> Maybe these could be removed and focus on mass increase?

4. Bugs & Language

“Suosittelisitko palvelua ystävillesi?” kohdassa sanasta “Kyllä” puuttuu toinen l-kirjain (“Kylä”). :)”

-> Kylä should be Kyllä on feedback page

“Tavoite laatikon perässä saisi olla mitä yksikköä siinä halutaan”

-> Add units after goal form field to clarify what is asked.

“Kun lisäsin ruokia omalle “tililleni”, ei missään tuntunut olevan hiilihydraatteja. Se valikko, mistä ruuat valitaan, voisi olla selkeämpi (esim. isompi ja ADD-nappula aina samassa kohtaa). Haku-toiminto ruoka-aineille olisi myös kätevä.”

-> search function for nutrition, bigger add button with fixed position

“Itse tykkään etsiä aina lisätietoja varsinkin tällaisista urheiluun liittyvistä aiheista, joista löytyy aina monia mielipiteitä. Siksi olisin kaivannut esim. linkkejä lisätietoon “The Harris Benedict Equation” -menetelmästä”

-> Insert a link to “The Harris Benedict Equation”

“-Report is showing for today: 364% ACHIEVED (!!??)”

This is an issue I spotted myself, too. There must be something bizarre in the calculation formula, or can you give me example of a proper diet of 100% per day for let’s say a person weighing 60kg?

“- Many times a orange button option is dimmed, and little confusing (do I need to enter more infp? Does it work?)”

-> The button should be yellow in normal state and changed in mouseover, not other way around.

In reports/diet, “viikottain” should be “viikoittain”

Traning advice -> Training advice

Also, server location still shows Ukraine. There’s still some timelag which can be annoying.

There’s a logic problem -> when i insert a weightlifting training of 5 x 35kg in goals and then go into tracking, i shouldn’t reinsert the same stuff. i should be able to select the activity and then check that it’s done. if the weight was different, it should be changed in goals and not here.

***

Joni

Thoughts on Remora’s Curse

english

Remora’s curse takes place when startup attaches itself to a large platform in the attempt to solve the chicken-and-egg problem of getting users. The large platform then exercises its greater power to void the investments made by the startup into the platform, essentially causing more or less deadly delays and needs for re-design. The idea originates from Don Dodge who wrote about the Remora Business Model.

Examples:

  • Facebook stopping “friends of friends” access
  • Twitter killing ecosystem players (cf. Meerkat)
  • LinkedIn killing Developer program
  • Google’s Panda update dropping sites

The popular platform is not your friend. If their interests collide with yours, they will walk over you. Period.

Solutions:

  • diversify – don’t be dependent on only one platform
  • limit the overall dependence on platforms; i.e. do not make integration your secret sauce (aka “never build your house on rented land”)
  • capture the users (envelopment): when you get them to visit for the first time, make them yours; e.g. email subscription, registration

Purposefully limit the role of platform to user acquisition as opposed to being core value prop. Platforms, seen this way, are just like other marketing channels – if they work, scale. if not, kill. The benefit of platform integration is that it may partially solve the cold-start problem: get faster traction and accelerate user growth.

Read more about Remora’s curse in my dissertation: Startup dilemmas – Strategic problems of early-stage platforms on the internet

Joni

Machine learning and Facebook Ads

english

Introduction

One important thing in machine learning is feature engineering (selection & extraction). This means choosing the right variables that improve the model’s performance, while discarding those reducing it. The more impact your variables have on the performance metric, the better. Because the real world is complex, you may start with dozens or even hundreds of variables (=features), but in the end, you only want to keep the ones that improve the model’s performance.

While there are algorithms, such as information gain, to help, expert judgment can be of help as well. That’s because experts may have prior information on the important inputs. Therefore, one could interview industry insiders prior to creating a machine-learning model. Basically, the expert opinion narrows down the feature space. While this approach has risks, primarily foregoing hidden or non-obvious features, as well as potential expert biases, it also has obvious advantages in terms of distinguishing signal from noise.

So, the premise of narrowing down search space is the motivation for this article. I got to think, and do some rapid research, on what features matter for performance of Facebook advertising. These could be used as a basis for machine learning model e.g. to predict performance of a given ad.

A. Text features

  • topic
  • sentiment [1]
  • includesPrice
  • includesBrandName
  • wordCount [1]
  • wordLength
  • charCount [1]
  • includesEmojis
  • meaningEmojis
  • includesQuestion
  • includesExclamation
  • includesImperative
  • includesBenefits
  • includesNumbers
  • isSimpleLanguage
  • includesShortURL

B. Images

  • includesText [2]
  • includesPrice
  • includesProduct [2]
  • includesLogo
  • imageObjects
  • includesPeople
  • includesFace
  • includesAnimals
  • imageLocation
  • isStockphoto
  • includesCTA
  • isDarkColorTheme [2]

C. Metrics

  • clicksAll
  • clicksWebsite
  • websitePurchases
  • countLikes

D. Demographics

  • gender
  • age
  • location

E. Misc features

  • adPlacement
  • campaignGoal

Application

A simple model could only account for C (=independent and dependent variables) and D (independent variables), while more complex models would run a more complex analysis of text and images using linear or non-linear optimization, such as neural networks (shallow or deep learning). Also, some of these features could be retrieved by using commercial or public APIs. For example,

  • Google Cloud Vision API – for image analysis [3]
  • MonkeyLearn – for text analysis [4]
  • EmojiNet API – for emoji analysis [5]

Limitations

Ideally, each advertiser has his own model, because they may not generalize well (e.g., different advertisers have different target groups). However, feature selection may benefit from learning from earlier experiences. Also, given that there is enough data, it may be possible that the model learns which features apply across different advertisers, achieving a greater degree of generalizability.

References

[1] https://adespresso.com/academy/blog/we-analyzed-37259-facebook-ads-and-heres-what-we-learned/

[2] https://venngage.com/blog/facebook-images/

[3] https://cloud.google.com/vision/

[4] http://monkeylearn.com/

[5] http://emojinet.knoesis.org/home.php

Joni

How to do political marketing on social media? A systematic process leveraging Facebook Ads

english
How to do political marketing on social media? A systematic process leveraging Facebook Ads

This post very briefly explains a process of using and scaling Facebook advertising for political marketing. It might not be clear for all readers, but professional online marketers should be able to follow.

The recipe for political marketing by using Facebook Ads:

  1. Create starting parameters (Age, Gender, Location, Message)
  2. Create total combinations based on the starting parameters
  3. Use prior information to narrow down search space: e.g., identify the 100 most important target groups (e.g., battle-ground states)
  4. Create Facebook Ads campaigns based on narrowed down search space
  5. Run the campaigns (the shortest time is one day, but I would recommend at least 2-3 days to accommodate Facebook’s algorithm)
  6. Analyze the results; combine data to higher level clusters (i.e., aggregate performance stats with matching groups from different campaigns)
  7. Scale up; allocate budget based on performance, iteratively optimize for non-engaged but important groups, and remove the already-converted voters.

The intuition:

You are using Facebook Ads to test how many different target groups respond to your message. You will cluster this data to identify the most engaged target groups. You will then try to maximize voter turnout within those groups (i.e., maximize conversion). In addition, you will create new messages for those groups which are not currently responding well but which you need to capture in order to win the election. You will keep testing these groups by creating new messages, one by one finding the most responsive groups for a given message.

Once a target group shows a high level of engagement, you will scale up your advertising efforts (think 10x or 100x increase). You will keep the test cycle short (a week is more than enough), and the scaling period long. Based on campaign events, you may want to revisit already secured groups to ensure their engagement remains high. Because you are not able to measure the ultimate conversion (=voting directly), you will use proxy metrics that reflect the engagement of different target groups (particularly, clicks, CTR, post-click behavior such as time-on-site, newsletter subscriptions). This enables you to predict likelihood to vote based on social media engagement. Once a person has “converted”, he or she is removed from targeting – this is done to avoid wasting your budget by preaching to the choir.

Here are some additional metrics you can consider, some of them are harder to infer than the basic ones: frequency of activity, sentiment level, interest in a single issue that cause votes, and historical voting records (district level). According to different metrics used, we can set a target level (e.g., time-on-site > 3 mins) or binary event (subscription to campaign newsletter) which represents conversion.

Overall, we try to mimic the best practices of online marketing optimization here by 1) testing with explore-exploit mentality (scaling appropriately), and 2) excluding those who converted from future targeting (in effect, they are moved into a different budget which is direct targeting by email – a form which is more personal and cheaper than ads). In addition, we delimit the search space by using our prior information on the electorate, again to avoid wasteful impressions and maximize ROI-efficiency.

Then, we fill the selected groups with data and observe the performance metrics. Finally, we cluster the results to get a higher-level understanding of each group, as well as find points of agreement between the groups that can be used to refine the communication strategy of the larger political campaign. Therefore, the data we obtain is not solely limited to Facebook Ads but can be used to further enhance messaging in other channels as well.

There. The methodology represents a systematic and effective way to leverage Facebook Ads for political social media marketing.

Also read:

Agile methods for predicting contest outcomes by social media analysis

Analyzing sentiment of topical dimensions in social media

Affinity analysis in political social media marketing – the missing link

Joni

The Role of Assumptions in Startup Pitching

english
The Role of Assumptions in Startup Pitching

More than truthfulness of the numbers, investors evaluate the assumptions underneath a pitch. They are not asking “Are these numbers real?” but “Could they be real?”.

The assumptions reveal the logic of thinking by the founders. When examining them in detail, one should get logical answers to questions like:

  1. How many sales people are needed to hit the sales goals?
  2. How much will it cost to achieve the sales target?
  3. How much is the cost for acquiring a new customer?
  4. How long is the average sales cycle?

(Assuming an enterprise sales case; the questions in a B2C market would be different, so you need to consider the circumstances.)

The investors are looking for “intellectual rigor” and “completeness of thought” from the founders. Therefore, the pitch needs to show that you understand how to run the business, and how those actions are linked with growth within a defined timeframe. Like one investor said, it is better to be roughly right than exactly wrong.

Joni

Startup due diligence: Some considerations

english
Startup due diligence: Some considerations

We had an interesting week with the Qatar Science and Technology Park (QSTP) that had invited several high-profile entrepreneurs from the US to evaluate the technologies of Qatar Computing Research Institute (QCRI).

Unfortunately, I wasn’t able to attend all the sessions, but from what I saw I picked up a few pointers for due diligence work done by investors when evaluating the startups. Here they are:

  • customer references => who are the existing customers and what do they say?
  • investor references => who are the existing investors and what do they say?
  • competitors => feature comparison & position map
  • technology => expert evaluation
  • IPR => defensibility of the core tech
  • key competitive advantage => if not the core tech, then what is the thing preventing others from replicating your success?

Conclusion

It’s worthwhile to mention that the formal due diligence process is something different from an informal one – the latter takes place when the investor does some initial inquiries about the team and the tech, and then decides whether he wants to pursue further discussions. After reaching an adequate level of confidence, formal and detailed due diligence procedures conducted with the help of experts (e.g., tech, legal, science) ensue.

Joni

Social media marketing for researchers: How to promote your publications and reach the right people

english
Social media marketing for researchers: How to promote your publications and reach the right people

Today the Social Computing group at Qatar Computing Research Institute had the pleasure of listening to the presentation of Luis Fernandez Luque about social media marketing for researchers. Luis talked about how to promote your publications and personal brand, as well as how to reach the right people on social media with your research.

Luis is one of the most talented researchers I know, and a very good friend. He has two amazing girls and a great wife. You can follow Luis’ research on health informatics on Slideshare, Twitter, and of course connect with him on LinkedIn.

In this post, I’ll summarize some points of his presentation (if you want the full thing, you need to ask him :), and reflect them on my own experiences as a digital marketer.

Without further ado, here are 7 social media tips for researchers.

1. Upload your articles to the 3 big social media platforms for researchers

According to Luis, there are three major social media sites for researchers. These are:

You should post your papers on each of these platforms to get extra visibility. According to Luis, the point is to disseminate content in existing platforms because they have the critical mass of audience readily available. This is preferable to starting your own website from scratch and trying to attract visitors.

However, I recommend doing both. In addition to sharing your research on social media, you can have a separate websites for yourself and dedicated websites for your research projects. Having dedicated websites with a relevant domain provides search-engine optimization (SEO) benefits. In particular, websites are indexed better than social media sites which means you have a better chance of being found. Your papers will get indexed by search engines and therefore will attract occasional hits, depending on your chosen keywords and competition for them (see point number 4).

For the same reason you want to effectively cross-link and cross-post your content. For example, 1) publish the post in your own website, 2) re-publish it on LinkedIn, and 3) share on Twitter, LinkedIn, and Google+ (as well as researcher social networks, if it’s academic content, but here I’m referring to idea posts or popularized articles). Don’t forget Google+, because occasionally those posts show up in search results. Sharing can be repeated and schedule by using BufferApp. For example, I have all my LinkedIn articles mirrored at jonisalminen.com.

Finally, besides your research papers, consider sharing your dissertation as well as Bachelor/Master theses. Those are often easier to read and reach a wider audience.

2. Recycle content and ideas

Luis mentioned he was able to increase the popularity of one of his papers by creating a Slideshare presentation about it. This principle is more commonly known as content tree in inbound marketing. I completely agree with Luis’ advice – it is often straight-forward and fast to create a presentation based on your existing paper, because you already know what you want to say.

If you have conference presentations or teaching material readily available, even better. For example, I’ve shared all my digital marketing lectures and teaching material at Slideshare, and they steadily attract views (tens of thousands in total so far). Here is an example of a presentation I made based on the post you’re reading. As you can see, it has an interesting title that aims to be “search-engine optimized”. By scrolling down, you also notice that Slideshare converts the presentation also into pure text. This is good for search-engine visibility, and one reason why Slideshare presentations rank well in Google. The picture from my Slideshare Analytics shows many people find the presentations through Google.

Figure 1 Slideshare Analytics showing large share of search traffic.

Luis also mentioned including the name of your publication in the title slide which is a good idea if you want to catch more citations from interested readers.

3. Create an online course

MOOCs and other forms of online education form a great way for disseminating your ideas and making your research more well known. Luis mentioned two platforms for this:

The point is to share knowledge and at the same time mention your own research. I think Luis mentioned he had at some point 4,000 participants for his course which is a very large audience and shows the power of online courses compared to traditional classrooms (I think I had maximum 100 students in my course, so you can see how big the difference in reach is).

4. Choose the right title

This is like copywriting for researchers. The title plays an important role for two reasons: 1) it determines whether people become interested and click forward to reading your paper, and 2) it can increase or decrease your chances of being found in Google. A straight analogy is journalism: you want some degree of click-bait in your title, because you are competing against all other papers for attention. However, in my experience many scholars pay little attention to the attractiveness of the title of their paper from the clicker’s perspective, and even fewer perform keyword research (the post in Finnish) to find out about popularity of related keywords.

So, how to choose the title of a research paper?

  1. Research & include relevant keywords
  2. Mention the problem your research deals with

The title should be catchy (=attractive) and include keywords people are using when they are searching information on the topic, be it research papers or just general knowledge. Luis’ tip was to include the problem (e.g., diabetes) in the title to get more downloads. Moreover, when sharing your papers, use relevant hashtags. In the academia, the natural way is to identify conference hashtags relating to your topic — as long as it’s relevant, using conference hashtags to promote your research is okay.

You can use tools such as Google Keyword Planner and Google Trends for keyword research. To research hashtags, Twitter’s recommendation feature is an easy approach (e.g., in TweetDeck you get recommendations when you start writing a hashtag). You can also use tools such as Hashtagify and Keyhole to research relevant hashtags. Finally, also include the proper keywords in your abstract. While full papers are often hidden behind gateways, abstracts are indexed by search engines.

5. Write guest blogs

Instead of trying to make a go with your own website (which is admittedly tough!), Luis recommended to write guest posts in a popular blogs. The rationale is the same as in the case of social media platforms: these venues already have an audience. As long as the blog deals with your vertical, the audience is likely to be interested in what you say. For content marketers, getting quality content is also a consistent source of concern, so it is easy to see a win-win here.

For example, you can write to research foundation blog. In case they gave you money, this also serves to show you are actively trying to popularize your research, and they get something in return for their money! Consider also industry associations (e.g., I haven’t come around to it yet, but I would like to write to IAB Finland’s blog since they have a large audience interested in digital marketing).

6. Define your audience

Luis advised to define your audience carefully – it is all about determining your area of focus and where you want to make an impact. On social media, you cannot control who sees your posts, but you can increase the chances of reaching the right people by this simple recipe:

  1. Find out who are the important people in your field
  2. Follow them on Twitter and LinkedIn
  3. Tag them to posts of both platforms.

The last point doesn’t always yield results, but I’ve also had some good experiences by including the Twitter handle of a person I know is working on the topic I’m writing about. Remember, you are not spamming but asking for their opinion. That is perfectly fine.

7. Track and optimize

This is perhaps the most important thing. Just like in all digital marketing, you need to work on your profile and social media activity constantly to get results. The competition is quite high, but in the academia, not many are fluent with social media marketing. So, as long as you put in some effort, you should get results relatively easier than in the commercial world! (Although, truth be told, you are competing with commercial content as well.)

How to measure social media impact?

  • choose metrics
  • set goals
  • track & optimize

For example, you could have reads/downloads as the main KPI. Then, you could have the goal of increasing that metric +30% in the next six months. Then, you would track the results and act accordingly. The good thing about numbers and small successes is that you become addicted. Well, this is mostly a good thing because in the end you also want to get some research done! But as you see that your posts get some coverage, it encourages to carry on. And gradually you are able to uplift your social media impact.

A research group could do this as a whole by giving somebody the task to summarize social media reach of individuals + the group as a whole. It would be fairly easy to incentivize good performance, and encourage knowledge sharing on what works. By sharing best practices, the whole group could benefit. Besides disseminating your research, social media activity can increase your citations, as well as improve chances for receiving funding (as you can show “real impact” through numbers).

The tool recommended by Luis is called Altmetric which is specifically tailored for research analytics. I haven’t used it before, but will give it a go.

Conclusion

The common theme is sharing your knowledge. In addition to just posting, you can also ask and answer questions on social media sites (e.g., on ResearchGate) and practitioner forums (e.g., Quora). I was able to beat my nemesis Mr. Valtteri Kaartemo in our Great Dissertation Downloads Competition by being active on Quora for a few weeks. Answering Quora questions and including a link in the signature got my dissertation over 1,000 downloads quickly, and since some question remain relevant over time, it still helps. But this is not only about competitions and your own “brand” but about using your knowledge to help others. Think of yourself as an asset – the society has invested tremendous amounts of time, effort and money into your education, and you owe it to the society to pay some of it back. One way to do that is sharing your knowledge on social media.

I still remember one professor saying a few years ago she doesn’t put her presentations on Slideshare because “somebody might steal the ideas”. But as far as I’m concerned, a much bigger problem is that nobody cares about her ideas. We live in a world where researchers compete against all sources of information – and we must adapt to this game. In my experience, the ratio of effort put in conducting research and communicating it is totally twisted, as most researchers lack the basic skills for social media marketing and hardly do any content marketing at all.

This is not only harmful for their careers, but also to various stakeholder groups that miss the important insights of their research. And I’m not only talking about popularization, but also other researchers increasingly rely on social media and search engines for finding relevant papers in their field. Producing high-quality content is not enough, but you also need to market your papers on social media. By doing so, you are making a service to the community.

Readings

Joni

The balanced view algorithm

english
The balanced view algorithm

I recently participated in a meeting of computer scientists where the topic was “fake news”. The implicit assumption was that “we will do this tool x that will show people what is false information, and they will become informed.”

However, after the meeting I realized this might not be enough, and in fact be naïve thinking. It may not matter that algorithms and social media platforms show people ‘this is false information’. People might choose to believe in the conspiracy theory anyway, for various reasons. In those cases, the problem is not the lack of information, it is something else.

And the real question is: Can technology fix that something else? Or at least be part of the solution?

The balanced view algorithm

Because, technically, the algorithm is simple:

  1. Take a topic
  2. Define the polarities of the topic
  3. Show each user an equal number of content of each polarity

=> results in a balanced and informed citizen!

But, as said, if the opposing content is against what you want to believe in, well, then the problem is not “seeing” enough that content.

Conclusion

These are tough questions and reside in the interface of sociology and algorithms. On one hand, some of the solutions may approach manipulation but, as propagandists could tell, manipulation has to be subtle to be effective.

The major risk is that people might rebel against a balanced worldview. It is good to remember that ‘what you need to see’ is not the same as ‘what you want to see’. There is little that algorithms can do if people want to live in a bubble.

Originally published at https://algoritmitutkimus.fi/2017/04/16/the-balanced-view-algorithm/