Skip to content

Tag: facebook ads

How to Audit International Facebook Advertising? A 37-Item Checklist

This is a joint article written with Mr. Tommi Salenius who works as a digital marketing specialist at Parcero Marketing Partners.

Introduction

Facebook advertising is a powerful form of online marketing for many purposes ranging from direct response campaigns to brand visibility and awareness. However, the competition in the ad platform is increasing every year, as companies are increasing their investments due to the fact that Facebook advertising, relatively speaking, works very well.

Figure 1 shows how Facebook’s revenue, comprising almost exclusively from advertising, has grown during the last nine years. Last year, almost $40,000,000,000 (that’s forty billion dollars) were spent on Facebook ads.

Figure 1. Facebook worldwide ad revenue statistics from Statista.com.

Increasing budgets imply increasing competition which means that in order to maintain the same visibility, advertisers need to increase their bids. For this purpose, in order to make profit in Facebook, advertisers need to continuously optimize their accounts.

To illustrate the power of Facebook advertising for online sales, Figure 2 shows an example from profitable Facebook account targeting direct online sales.

Figure 2. Example from Facebook account targeting direct online sales.

In this example, every euro invested in Facebook ads has generated direct online sales worth of €10. This means that with budget of €100,000 you can make sales worth of €1,000,000 if your target group is large enough and there is demand for your product (assuming that the sale grow linearly, of course).

The case of international Facebook advertising

Facebook is also one of the best choices to advertise globally, given its user base of more than two billion monthly active users (source: Statista.com).

Using the Locations feature in Facebook Ads targeting, several geographic targeting criteria can be chosen:

  • worldwide (type “Worldwide”)
  • country group or geographic region (e.g., type “in Europe”)
  • free trade area (e.g., type in “GCC, the Gulf Cooperation Council”)
  • sub-regions within a country (e.g., type in “Washington”)
  • other features (e.g., type in “Emerging markets”).

Figure 3 illustrates the Facebook targeting interface.

Figure 3. Targeting interface in Facebook Ads.

At the time of writing (October, 2018), the global targeting options in Facebook include the following:

Country groups

  • Africa
  • Asia
  • Caribbean
  • Central America
  • Europe
  • North America
  • Oceania
  • South America

Free Trade Areas

  • AFTA (ASEAN Free Trade Area)
  • APEC (Asia-Pacific Economic Cooperation)
  • CISFTA (Commonwealth of Independent States Free Trade Area)
  • EEA (European Economic Area)
  • GCC (Gulf Cooperation Council)
  • MERCOSUR
  • NAFTA (North American Free Trade Agreement)

Other Areas

  • Android app countries (paid)
  • Android app countries (all)
  • Emerging markets
  • Euro area
  • iTunes app store countries

Despite the tremendous potential of global advertising in Facebook Ads, companies often do not exploit this potential to the fullest. Moreover, we have observed that large international accounts tend to be messy and not well optimized. Therefore, in the following, we provide a checklist that can be used to audit such international Facebook Ads accounts.

Checklist for auditing international Facebook advertising

Here is a checklist for auditing Facebook paid advertising for international companies. This checklist is a concrete tool that can be used to evaluate your Facebook ad account’s current performance and identifying development areas that can get you toward desired results. There will be four sections: A) Account setup, B) Ad campaigns, C) Organic content, and D) International aspect.

Section A: Account setup

1. Is Facebook Business Manager activated? Benefit: Gain more control over user rights and possibility to operate with partners.

2. Is Facebook pixel is installed and configured? Benefit: Makes it possible to track business-related goals, for example, sales, visitors, blog reading times etc.

3. Is additional software being used besides Facebook Ad Platform? Benefit: Specific tools (e.g. Smartly, AdEspresso, Qwaya) can enhance Facebook performance by providing special features. If they are not used, at least they should be explored.

4. Is international Facebook page feature acclaimed? Benefit: This feature enables unified follower count for country pages but separated content on the country basis.

5. Is ‘business locations’ option used? Benefit: This feature enables to input specific geographic business locations.

Section B: Ad campaigns

6. Are Facebook campaign goals aligned with business goals? Benefit: The campaign goals (e.g. reach, engagement, traffic, sales, leads) should be traced back to overall marketing strategy to ensure they match what is wanted.

7. What is Facebook strategy of the current campaigns? Benefit: In auditing, it is useful to mentally classify the types of campaigns used in the ad account. These can include:

  • technology oriented — e.g., using dynamic ads for advanced targeting
  • content oriented — e.g., using creative concepts to get noticed
  • systematic advertising — i.e., customers need to be reminded regularly
  • ad hoc campaigns — i.e. running ads sporadically without clear purpose

8. Is there something that works already? Benefit: Verifying what already works enables to focus efforts on proven areas (e.g., some campaigns generate sales with low cost, data shows that specific creatives are working, different demographics are responding to ads).

9. Are there budget delivery problems? Benefit: Deliver issues are a common concern in Facebook Ads. Potential reasons: low ad relevance scores, low budget or bids, or not enough conversions (minimum 100 per month), wrong optimization goal. Solutions: change your optimization goal, e.g. from purchases to link clicks, test new target groups and ads, increase budget and bids.

10. Does campaign structure follow best practices? Benefit: Clear division of campaigns provides better tracktability and optimization. There should be different campaigns for all goals: prospecting and retargeting, upselling and cross-selling, reach and sales etc.

11. What auction type is used? Benefit: Auction vs. fixed price: with auction you get better results if you beat competition.

12. What placements are used? Benefit: Performance varies across placements, therefore, they should be tested. Facebook ad platform offers these placements: Facebook, Instagram, Audience Network, and Facebook Messenger. Based on our experiments, Audience Network usually performs poorly, and Instagram is more expensive than Facebook. Moreover, Messenger ads might be thought of more annoying than other placements because they are invading the user’s private space (the inbox).

13. What ad content types have been tested? Benefit: A good account has tested various different ad types (incl. carousel, link ad, instagram story, video, image, canvas).

14. What retargeting types have been used? Benefit: A good account has applied multiple retargeting types (incl. website retargeting, email retargeting, content retargeting).

15. What levels of retargeting are utilized? Benefit: A good account is “deep retargeting”, meaning that retargeting is specified to particular section of the website (e.g., main page, category pages, products pages, blog articles, cart, upselling, cross-selling).

16. What lookalike audience types are used? Benefit: Lookalike audiences can work because they retrieve similar users by “cross-polinating” the targeted subset of users with Facebook’s known information about other users. These options should have been tested (website, email, page likes, purchased lookalikes).

17. Is A/B testing performed systematically? Benefit: A/B test are a sign of active campaign management (both ad set and ad level). Facebook Ads provides a native option for A/B testing as a special campaign type (this campaign type can be used e.g. for testing different creatives, target groups or technical settings).

18. How well are the assets structured? Benefit: Clear naming principles make it easier to analyze and optimize (e.g., are campaigns, ad sets, and ads named systematically).

19. Is UTM tagging used? Benefit: UTM parameters enable tracking visitor performance in other analytics software, such as Google Analytics. The tagging can be done manually or automatically; the main point is that it should be done.

20. What attribution model is used? Benefit: Choosing a different attribution model can drastically change the interpretation of account performance. There are two types of conversions in Facebook: view conversions and click conversions. To get a more conversative view, include only the click conversions with a short attribution window (e.g., 1 day). To get a more rosy picture, include view conversions with a long attribution window (e.g., 28 days). There is no absolutely right or wrong attribution model.

21. Is dynamic advertising used? Benefits:

  • dynamic advertising can be used both in retargeting and in new customer acquisition
  • it offers wide range of options, if technical setup is made correctly, e.g., automated price promotions

22. Is advanced configuration of dynamic advertising used? Benefit: This is underused, yet highly potential feature of Facebook Ads — it enables to customize automatic advertising (e.g., prefer products with high gross margin, geographically show right products for right areas).

23. Are rules used for optimization? Benefit: Rules enable the monitoring and automatic response to business critical conditions (e.g., notification from data anomalies, adjusting budget based on results etc.).

24. Is the budget spent effectively? Benefit: Facebook Ads can waste budget, but there can also be much potential for upscaling the spend — based on performance metrics, one should analyze if the budget should be decrease/increased, what is the potential reach of target groups, how well are those target groups reached, and with what impression frequency.

25. What bid strategy is used? Benefit: A good account has tested several options, including: Lowest cost (standard), lowest cost with bid cap (risk of delivery issues), or Target cost (can be used for scaling up the budget).

Section C: Organic content

26. Is there enough quality content to be believable on the eyes of customers if they visit the Facebook page? Benefit: Visitors may want to check the quality of the page. Having little or no organic content creates mistrust.

27. How active are the Facebook followers of the page? Benefit: There can be a possibility to get insights from followers or turn their enthusiasm into more business. Engagement rate is a good metric, i.e. divide post responses by post impressions.

28. Is organic content reaching the target group? Benefit: If not, maybe it should be advertised. Many Facebook pages produce fairly good content that reaches nobody organically.

29. Is there point of focusing organic content or paid advertising? Benefit: The strategic roles of organic and paid should be addressed. What is the role of organic content? What is the role of paid advertising? Note: multiple ads can be advertised and A/B tested without publishing these on the news feed.

Section D: International aspect

30. Are the ads translated? When doing advertising to e.g. 10 countries with different languages, the ads should also be communicated in 10 different languages. Note that one country can contain multiple language groups, requiring localization even within a single country.

31. Is campaign structure supporting multiple languages? Each language should have been placed in separate target groups. For example, campaign could be name after the country, and it should contain different ad groups for each languages.

32. Is there enough budget to advertise internationally to all target groups? If you are targeting several countries, cities, and languages, these all need different budgets. In order to make impact, it is not usually wise to divide budget into too small pieces.

33. Is there other localization besides translation? Often, an error is made to assume localization is only about language. However, it is also about culture, customs, and ethnicity. For example, value propositions of communicated benefits may be entirely different when the same product is promoted to culturally different target groups (e.g., collectivity-individuality aspect might differ). Another example is that imagery matters for ethnic match between the target audience and people shown in the ads.

34. Have the country-basis legal restrictions been taken into consideration? E.g. different countries have different restrictions for promoting alcohol products, and European countries have strict orders for handling the data according to GDPR protocol.

35. How do normalized metrics vary by countries? Compare performance by normalized metrics (e.g., ROI), because that adjusts for variation between the markets. For example, Facebook Ads bids can be ten times more expensive in the US than in Vietnam. Similarly, purchase power differs so avg. conversion value can be one tenth in Vietnam, meaning that advertising would be equally profitable. To account for this, use normalized metrics, such as ROI or ROAS.

36. What are the city-level performance differences? Another common mistake is to assume that country is detailed enough segmentation criteria for performance differences. However, performance can vary greatly by city, e.g. in big countries like China or US. Moreover, rural areas can differ compared to city areas because people’s tastes, values, and behavior is different. To accommodate for this, Facebook advertisers should segment by city in addition to country (e.g., compare TOP 5 cities of each country).

37. What are the segment similarities across countries? Each impression has a cost. And each impression also adds information about customer responses. However, in the Facebook Ads account the performance values are siloed across different campaigns and ad sets. Therefore, to optimize such accounts, data needs to be combined. For example, if targeting 12 countries, the performance by demographic groups can be aggregated to give more statistical power (higher reliability for found similarities and differences).

Conclusion

This list of 37 items is a good starting point for analysing any Facebook Ads account running international campaigns. Besides these steps, Facebook account level data can be used for analysis purposes to find patterns in the data. For example, making country level breakdowns is made easy in the user interface of Facebook Ads platform.

About the authors:

Tommi Salenius is a Digital Marketing Manager at Elämyslahjat.fi, a Finnish e-commerce company that sells experience gifts. Tommi also works at Parcero Marketing Partners as a Lead Digital Marketing Strategist. www.tommisalenius.com

Joni Salminen is a Digital Marketing Manager at Elämyslahjat.fi, a Finnish e-commerce company selling experience gifts. Joni is also a board member at Konvertigo Digital Agency that runs digital marketing campaigns to over 100 countries. www.jonisalminen.com

Machine learning and Facebook Ads

Introduction

One important thing in machine learning is feature engineering (selection & extraction). This means choosing the right variables that improve the model’s performance, while discarding those reducing it. The more impact your variables have on the performance metric, the better. Because the real world is complex, you may start with dozens or even hundreds of variables (=features), but in the end, you only want to keep the ones that improve the model’s performance.

While there are algorithms, such as information gain, to help, expert judgment can be of help as well. That’s because experts may have prior information on the important inputs. Therefore, one could interview industry insiders prior to creating a machine-learning model. Basically, the expert opinion narrows down the feature space. While this approach has risks, primarily foregoing hidden or non-obvious features, as well as potential expert biases, it also has obvious advantages in terms of distinguishing signal from noise.

So, the premise of narrowing down search space is the motivation for this article. I got to think, and do some rapid research, on what features matter for performance of Facebook advertising. These could be used as a basis for machine learning model e.g. to predict performance of a given ad.

A. Text features

  • topic
  • sentiment [1]
  • includesPrice
  • includesBrandName
  • wordCount [1]
  • wordLength
  • charCount [1]
  • includesEmojis
  • meaningEmojis
  • includesQuestion
  • includesExclamation
  • includesImperative
  • includesBenefits
  • includesNumbers
  • isSimpleLanguage
  • includesShortURL

B. Images

  • includesText [2]
  • includesPrice
  • includesProduct [2]
  • includesLogo
  • imageObjects
  • includesPeople
  • includesFace
  • includesAnimals
  • imageLocation
  • isStockphoto
  • includesCTA
  • isDarkColorTheme [2]

C. Metrics

  • clicksAll
  • clicksWebsite
  • websitePurchases
  • countLikes

D. Demographics

  • gender
  • age
  • location

E. Misc features

  • adPlacement
  • campaignGoal

Application

A simple model could only account for C (=independent and dependent variables) and D (independent variables), while more complex models would run a more complex analysis of text and images using linear or non-linear optimization, such as neural networks (shallow or deep learning). Also, some of these features could be retrieved by using commercial or public APIs. For example,

  • Google Cloud Vision API – for image analysis [3]
  • MonkeyLearn – for text analysis [4]
  • EmojiNet API – for emoji analysis [5]

Limitations

Ideally, each advertiser has his own model, because they may not generalize well (e.g., different advertisers have different target groups). However, feature selection may benefit from learning from earlier experiences. Also, given that there is enough data, it may be possible that the model learns which features apply across different advertisers, achieving a greater degree of generalizability.

References

[1] https://adespresso.com/academy/blog/we-analyzed-37259-facebook-ads-and-heres-what-we-learned/

[2] https://venngage.com/blog/facebook-images/

[3] https://cloud.google.com/vision/

[4] http://monkeylearn.com/

[5] http://emojinet.knoesis.org/home.php

How to do political marketing on social media? A systematic process leveraging Facebook Ads

This post very briefly explains a process of using and scaling Facebook advertising for political marketing. It might not be clear for all readers, but professional online marketers should be able to follow.

The recipe for political marketing by using Facebook Ads:

  1. Create starting parameters (Age, Gender, Location, Message)
  2. Create total combinations based on the starting parameters
  3. Use prior information to narrow down search space: e.g., identify the 100 most important target groups (e.g., battle-ground states)
  4. Create Facebook Ads campaigns based on narrowed down search space
  5. Run the campaigns (the shortest time is one day, but I would recommend at least 2-3 days to accommodate Facebook’s algorithm)
  6. Analyze the results; combine data to higher level clusters (i.e., aggregate performance stats with matching groups from different campaigns)
  7. Scale up; allocate budget based on performance, iteratively optimize for non-engaged but important groups, and remove the already-converted voters.

The intuition:

You are using Facebook Ads to test how many different target groups respond to your message. You will cluster this data to identify the most engaged target groups. You will then try to maximize voter turnout within those groups (i.e., maximize conversion). In addition, you will create new messages for those groups which are not currently responding well but which you need to capture in order to win the election. You will keep testing these groups by creating new messages, one by one finding the most responsive groups for a given message.

Once a target group shows a high level of engagement, you will scale up your advertising efforts (think 10x or 100x increase). You will keep the test cycle short (a week is more than enough), and the scaling period long. Based on campaign events, you may want to revisit already secured groups to ensure their engagement remains high. Because you are not able to measure the ultimate conversion (=voting directly), you will use proxy metrics that reflect the engagement of different target groups (particularly, clicks, CTR, post-click behavior such as time-on-site, newsletter subscriptions). This enables you to predict likelihood to vote based on social media engagement. Once a person has “converted”, he or she is removed from targeting – this is done to avoid wasting your budget by preaching to the choir.

Here are some additional metrics you can consider, some of them are harder to infer than the basic ones: frequency of activity, sentiment level, interest in a single issue that cause votes, and historical voting records (district level). According to different metrics used, we can set a target level (e.g., time-on-site > 3 mins) or binary event (subscription to campaign newsletter) which represents conversion.

Overall, we try to mimic the best practices of online marketing optimization here by 1) testing with explore-exploit mentality (scaling appropriately), and 2) excluding those who converted from future targeting (in effect, they are moved into a different budget which is direct targeting by email – a form which is more personal and cheaper than ads). In addition, we delimit the search space by using our prior information on the electorate, again to avoid wasteful impressions and maximize ROI-efficiency.

Then, we fill the selected groups with data and observe the performance metrics. Finally, we cluster the results to get a higher-level understanding of each group, as well as find points of agreement between the groups that can be used to refine the communication strategy of the larger political campaign. Therefore, the data we obtain is not solely limited to Facebook Ads but can be used to further enhance messaging in other channels as well.

There. The methodology represents a systematic and effective way to leverage Facebook Ads for political social media marketing.

Also read:

Agile methods for predicting contest outcomes by social media analysis

Analyzing sentiment of topical dimensions in social media

Affinity analysis in political social media marketing – the missing link